Интеллектуальные робототехнические системы


Машинное творчество. - часть 2


Из раздела первого (словарь) берутся нужные существительные, прилагательные, глаголы, смешиваются по образцам раздела второго (творческая часть) и получается «шедевр». Такой метод можно запрограммировать и можно написать повести, рассказы, стихи. Но вряд ли это можно назвать творчеством. Практически очевидно, что таким образом не будет создано гениальное в общечеловеческом смысле произведение.

Не будем требовать от интеллектуальных систем гениальности. ИС уже сейчас способны делать много полезной и разумной работы, которая требует какой-то доли интеллекта.

Среди направлений работ в области ИИ следует также выделить НЕЙРОКИБЕРНЕТИКУ, или иначе говоря, подход к разработке машин, демонстрирующих «разумное» поведение, на основе архитектур, напоминающих устройство мозга и называемых нейронными сетями (НС). В 1942 году, когда Н. Винер определил концепции кибернетики, В. Мак-Каллок и В. Питс опубликовали первый фундаментальный труд по НС, где говорилось о том, что любое хорошо заданное отношение вход-выход может быть представлено в виде формальной НС [17]. Одна из ключевых особенностей нейронных сетей состоит в том, что они способны обучаться на основе опыта, полученного в обучающей среде. В 1957 году Ф. Розенблат изобрел устройство для распознавания на основе НС - персептрон, который успешно различал буквы алфавита, хотя и отличался высокой чувствительностью к их написанию [18].

Читателю, возможно, интересно узнать, что у рядовых муравьев и пчел примерно 80 нейронов на особь (у царицы - 200-300 нейронов), у тараканов - 300 нейронов и эти существа показывают отличные адаптационные свойства в процессе эволюции. У человека число нейронов более 1010.

Пик интереса к НС приходится на 60-е и 70-е годы, но в последние десять лет наблюдается резко возросший объем исследований и разработок НС. Это стало возможным в связи с появлением нового аппаратного обеспечения, повысившего производительность вычислений в НС (нейропроцессоры, транспьютеры и т. п.). НС хорошо подходят для распознавания образов и решения задач классификации, оптимизации и прогнозирования.


Начало  Назад  Вперед



Книжный магазин