Интеллектуальные робототехнические системы


Альфа-бета-процедура - часть 2


На рис. 3.7 показаны

-? отсечения для конкретного примера. Таким образом,
-?-алгоритм дает тот же результат, что и метод минимакса, но выполняется быстрее.

 a-b отсечение для конкретного примера

Рис. 3.7.  a-b отсечение для конкретного примера

Использование алгоритмов эвристического поиска для поиска на графе И, ИЛИ выигрышной стратегии в более сложных задачах и играх (шашки, шахматы) не реален. По некоторым оценкам игровое дерево игры в шашки содержит 1040 вершин, в шахматах 10120 вершин. Если при игре в шашки для одной вершины требуется 1/3 наносекунды, то всего игрового времени потребуется 1021 веков. В таких случаях вводятся искусственные условия остановки, основанные на таких факторах, как наибольшая допустимая глубина вершин в дереве поиска или ограничения на время и объем памяти.

Многие из рассмотренных выше идей были использованы А. Ньюэллом, Дж. Шоу и Г. Саймоном в их программе GPS. Процесс работы GPS в общем воспроизводит методы решения задач, применяемые человеком: выдвигаются подцели, приближающие к решению; применяется эвристический метод (один, другой и т. д.), пока не будет получено решение. Попытки прекращаются, если получить решение не удается.

Программа STRIPS (STanford Research Institut Problem Solver) вырабатывает соответствующий порядок действий робота в зависимости от поставленной цели. Программа способна обучаться на опыте решения предыдущих задач. Большая часть игровых программ также обучается в процессе работы. Например, знаменитая шашечная программа Самюэля, выигравшая в 1974 году у чемпиона мира, "заучивала наизусть" выигранные партии и обобщала их для извлечения пользы из прошлого опыта. Программа HACHER Зуссмана, управляющая поведением робота, обучалась также и на ошибках.




Начало  Назад  Вперед