Интеллектуальные робототехнические системы

       

Система управления технологической машиной.


Система управления технологической машиной (рис. 8.2) в целом представляет сложную систему, способную решать отдельные интеллектуальные задачи. Как правило, современное производство еще далеко от того, чтобы широко применять указанные системы. Поэтому в данной лекции мы попытаемся рассмотреть только отдельные интеллектуальные задачи, решаемые системой управления станочного оборудования, построенного на подвижных стержневых механизмах. Указанные системы по своим функциональным характеристикам близки к промышленным роботам и во многом на них похожи.

Система управления, представленная на рисунке 8.3, предназначена для формирования законов управления исполнительными приводами, обработки информации систем контроля, задания траектории перемещения инструмента относительно обрабатываемой детали и обеспечения требуемых режимов обработки. Рассмотрим основные функции, выполняемые данной системой (рис. 10.1), более детально.

Система управления технологической машиной.

Рис. 10.1. 

  1. Описание поверхности, которую требуется получить после обработки на каждом переходе, а также после окончательной обработки. Эта информация хранится в виде массива опорных точек поверхности.
  2. Формирование траектории движения инструмента. Траектория рассчитывается исходя из снимаемого припуска на каждом переходе как непрерывное перемещение подвижного трехгранника ДAi в системе координат детали.
  3. Сравнение программной траектории перемещения инструмента ДAi с реальным его положением ДAK в системе координат детали. На основе данного сравнения определяются погрешности линейных и угловых координат ?.
  4. Определение реальных координат заготовки. Оптическая система контроля поверхности определяет реальные координаты поверхности заготовки AД* в системе координат детали. Сравнивая реальные координаты AД* с идеальными AД формируется массив F1(?, Si) распределения припуска по обрабатываемой поверхности.
  5. Вторым функциональным предназначением оптической системы контроля является определение шероховатости обрабатываемой поверхности и ее распределение. В зависимости от дискретной градации уровня шероховатости формируются зоны Si на поверхности с заданным уровнем микронеровностей RZ.
  6. Выбор информационных датчиков контроля положения.
    Информационные датчики qинф. выбираются из суммарного количества датчиков qm+qi, определяющих перемещения в сочленениях звеньев механизма параллельной структуры. Критерием, по которому выбираются данные датчики, является минимум погрешности вычисления выходного звена при заданной погрешности датчиков.


Состав системы управления и функциональные характеристики ее элементов. В состав системы управления (рис. 10.1) входят сепаратные приводы, представляющие замкнутые по положению следящие системы по каждой управляемой координате механизма. Кроме этого, система управления в целом также представляет следящую систему, в которой осуществляется сравнение программного положения режущей кромки инструмента ДAi с реальным его положением ДAK в системе координат детали.

Как было отмечено в лекции 9, для описания математических преобразований используется аппарат однородных матричных преобразований. Положение подвижного трехгранника (???)i, определяющего программное положение режущей кромки (рис. 10.2) в каждый момент времени, задается матрицей

Система управления технологической машиной.


где

Система управления технологической машиной.


- подматрица направляющих косинусов осей подвижного трехгранника (???)i, определяющего программное положение режущей кромки относительно осей координатной системы (XYZ)Д;

ДRi =[xiyizi]T - вектор, определяющий программное положение i-й точки поверхности в системе координат (XYZ)Д.

Соответственно, реальное положение режущей кромки определяется матрицей, аналогичной (10.1)

Система управления технологической машиной.


Система управления технологической машиной.

Рис. 10.2. 

В соответствии с (10.2), рассогласование между программным KAi и реальным положениями режущей кромки ДAK определяется из матричного произведения

ДAi=ДAKKAi, (10.3)

из которого

KAi=(ДAK)-1ДAi. (10.4)

Рассогласование между положениями трехгранников представляется матрицей KAi, структурно аналогичной матрицам (10.1) и (10.2). На основе KAi формируется вектор ?, элементами которого являются три элемента четвертого столбца, определяющие линейное рассогласование, и три элемента из матрицы направляющих косинусов KAi, не принадлежащие одному столбцу и одной строке.


Вектор ? является исходным для вычисления приращений управляющих обобщенных координат ?q.

Обратное преобразование Якоби J-1 (рис. 8.3), представляющее обратное преобразование от матрицы

Система управления технологической машиной.


связывает погрешности положения инструмента ? и приращения обобщенных управляемых координат ?q

? = J?q.s (10.5)

Система линейных уравнений (10.5) решается относительно ?q любым известным методом.

Выбор добротности и корректирующих устройств, обеспечивающих устойчивость системы и требуемую точность ?
Система управления технологической машиной.
?доп., осуществляется настройкой коэффициентов усиления K (рис. 8.3). Для определения начального положения механизма qi необходимо решать обратную задачу F-1(q) в абсолютных координатах.

Описание сложной поверхности и планирование управления исполнительными приводами для ее воспроизведения рассматривается в лекции 11.


Содержание раздела